chess:programming:prng_pseudo_random_number_generator:linear_congruential_generator
This is an old revision of the document!
Table of Contents
Chess - Programming - PRNG (Pseudo Random Number Generator) - Linear Congruential Generator
Linear Congruential Generator is most common and oldest algorithm for generating pseudo-randomized numbers.
The generator is defined by the recurrence relation:
Xn+1 = (aXn + c) mod c
NOTE: where
- X is the sequence of pseudo-random values.
- m, 0< m- modulus.
- a, 0< a <m- multiplier.
- c, 0< = c<m- increment.
- x0, 0⇐x0<m- the seed or start value.
The next random integer is generated using the previous random integer, the integer constants, and the integer modulus.
- To get started, the algorithm requires an initial Seed, which must be provided by some means.
- The appearance of randomness is provided by performing modulo arithmetic.
#include <iostream> #include <cmath> static const double A = 0.001342; static const double C = 0.00025194; static const double RAND_MAX = 1.0; double rand() { static double prev = 0; prev = A * prev + fmod(C, RAND_MAX); return prev; } int main(int argc, char **argv) { for(int i=0; i<6; i++) std::cout << rand() << "\n"; return 0; }
returns:
0.00025194 0.000252278 0.000252279 0.000252279 0.000252279 0.000252279
Switching to int instead of double
This gives some nice results:
#include <iostream> #include <cmath> static const int A = 5; static const int C = 3; static const int RAND_MAX = 8; double rand() { static int prev = 1; prev = A * prev + (C % RAND_MAX); return prev; } int main(int argc, char **argv) { for(int i=0; i<100; i++) std::cout << rand() << "\n"; return 0; }
returns:
8 43 218 1093 5468 27343 136718 683593 3.41797e+06 1.70898e+07 8.54492e+07 4.27246e+08 2.13623e+09 2.09122e+09 1.86615e+09 7.40836e+08 -5.90786e+08 1.34104e+09 ...
References
chess/programming/prng_pseudo_random_number_generator/linear_congruential_generator.1635708794.txt.gz · Last modified: 2021/10/31 19:33 by peter