neuron.h
#ifndef __SHAREWIZ_NEURON_H__ #define __SHAREWIZ_NEURON_H__ #include <memory> #include <vector> #include "activation.h" // Neuron class. // // Represents Synapsis within the brain. class Connection; typedef std::shared_ptr<Connection> pConnectionX; typedef std::vector<pConnectionX> pConnection; class Neuron { private: int index; double value; double gradient; // How far off, and in what direction (positive or negative), local value are relative to the target outputs. pConnection connections_in; pConnection connections_out; pActivationX activation; public: Neuron(); bool operator==(Neuron& rhs) const; unsigned int getSizeIn(void); // Returns how many connections. unsigned int getSizeOut(void); // Returns how many connections. void addConnectionIn(const pConnectionX& c); void addConnectionOut(const pConnectionX& c); pConnectionX &getConnectionIn(const unsigned int& idx); pConnectionX &getConnectionOut(const unsigned int& idx); void pruneConnectionIn(const double& threshold); // Remove all synapses with a value below the indicated threshold. void pruneConnectionOut(const double& threshold); // Remove all synapses with a value below the indicated threshold. void removeConnectionIn(const unsigned int& idx); void removeConnectionOut(const unsigned int& idx); double getGradient(void); void setGradient(const double& gradient); int getIndex(void); void setIndex(const int& index); double getValue(void); void setValue(const double& v); double randomizeValue(void); pActivationX &getActivation(void); Activation_Types getActivationType(); void setActivationType(Activation_Types _activation_type); double sigmoid(const double& weightedSum); double sigmoid_derivative(const double& x); double sigmoidX(double x); double hyperTanFunction(double& x); double tanh_derivative(const double& x); void printOutput(void); }; #endif