====== Ubuntu - Images - PNG to raw pixel buffer ======
#include
/*
decodePNG: The picoPNG function, decodes a PNG file buffer in memory, into a raw pixel buffer.
out_image: output parameter, this will contain the raw pixels after decoding.
By default the output is 32-bit RGBA color.
The std::vector is automatically resized to the correct size.
image_width: output_parameter, this will contain the width of the image in pixels.
image_height: output_parameter, this will contain the height of the image in pixels.
in_png: pointer to the buffer of the PNG file in memory. To get it from a file on
disk, load it and store it in a memory buffer yourself first.
in_size: size of the input PNG file in bytes.
convert_to_rgba32: optional parameter, true by default.
Set to true to get the output in RGBA 32-bit (8 bit per channel) color format
no matter what color type the original PNG image had. This gives predictable,
useable data from any random input PNG.
Set to false to do no color conversion at all. The result then has the same data
type as the PNG image, which can range from 1 bit to 64 bits per pixel.
Information about the color type or palette colors are not provided. You need
to know this information yourself to be able to use the data so this only
works for trusted PNG files. Use LodePNG instead of picoPNG if you need this information.
return: 0 if success, not 0 if some error occured.
*/
int decodePNG(std::vector& out_image, unsigned long& image_width, unsigned long& image_height, const unsigned char* in_png, size_t in_size, bool convert_to_rgba32 = true)
{
// picoPNG version 20101224
// Copyright (c) 2005-2010 Lode Vandevenne
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
// picoPNG is a PNG decoder in one C++ function of around 500 lines. Use picoPNG for
// programs that need only 1 .cpp file. Since it's a single function, it's very limited,
// it can convert a PNG to raw pixel data either converted to 32-bit RGBA color or
// with no color conversion at all. For anything more complex, another tiny library
// is available: LodePNG (lodepng.c(pp)), which is a single source and header file.
// Apologies for the compact code style, it's to make this tiny.
static const unsigned long LENBASE[29] = {3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258};
static const unsigned long LENEXTRA[29] = {0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0};
static const unsigned long DISTBASE[30] = {1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577};
static const unsigned long DISTEXTRA[30] = {0,0,0,0,1,1,2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13};
static const unsigned long CLCL[19] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; //code length code lengths
struct Zlib //nested functions for zlib decompression
{
static unsigned long readBitFromStream(size_t& bitp, const unsigned char* bits) { unsigned long result = (bits[bitp >> 3] >> (bitp & 0x7)) & 1; bitp++; return result;}
static unsigned long readBitsFromStream(size_t& bitp, const unsigned char* bits, size_t nbits)
{
unsigned long result = 0;
for(size_t i = 0; i < nbits; i++) result += (readBitFromStream(bitp, bits)) << i;
return result;
}
struct HuffmanTree
{
int makeFromLengths(const std::vector& bitlen, unsigned long maxbitlen)
{ //make tree given the lengths
unsigned long numcodes = (unsigned long)(bitlen.size()), treepos = 0, nodefilled = 0;
std::vector tree1d(numcodes), blcount(maxbitlen + 1, 0), nextcode(maxbitlen + 1, 0);
for(unsigned long bits = 0; bits < numcodes; bits++) blcount[bitlen[bits]]++; //count number of instances of each code length
for(unsigned long bits = 1; bits <= maxbitlen; bits++) nextcode[bits] = (nextcode[bits - 1] + blcount[bits - 1]) << 1;
for(unsigned long n = 0; n < numcodes; n++) if(bitlen[n] != 0) tree1d[n] = nextcode[bitlen[n]]++; //generate all the codes
tree2d.clear(); tree2d.resize(numcodes * 2, 32767); //32767 here means the tree2d isn't filled there yet
for(unsigned long n = 0; n < numcodes; n++) //the codes
for(unsigned long i = 0; i < bitlen[n]; i++) //the bits for this code
{
unsigned long bit = (tree1d[n] >> (bitlen[n] - i - 1)) & 1;
if(treepos > numcodes - 2) return 55;
if(tree2d[2 * treepos + bit] == 32767) //not yet filled in
{
if(i + 1 == bitlen[n]) { tree2d[2 * treepos + bit] = n; treepos = 0; } //last bit
else { tree2d[2 * treepos + bit] = ++nodefilled + numcodes; treepos = nodefilled; } //addresses are encoded as values > numcodes
}
else treepos = tree2d[2 * treepos + bit] - numcodes; //subtract numcodes from address to get address value
}
return 0;
}
int decode(bool& decoded, unsigned long& result, size_t& treepos, unsigned long bit) const
{ //Decodes a symbol from the tree
unsigned long numcodes = (unsigned long)tree2d.size() / 2;
if(treepos >= numcodes) return 11; //error: you appeared outside the codetree
result = tree2d[2 * treepos + bit];
decoded = (result < numcodes);
treepos = decoded ? 0 : result - numcodes;
return 0;
}
std::vector tree2d; //2D representation of a huffman tree: The one dimension is "0" or "1", the other contains all nodes and leaves of the tree.
};
struct Inflator
{
int error;
void inflate(std::vector& out, const std::vector& in, size_t inpos = 0)
{
size_t bp = 0, pos = 0; //bit pointer and byte pointer
error = 0;
unsigned long BFINAL = 0;
while(!BFINAL && !error)
{
if(bp >> 3 >= in.size()) { error = 52; return; } //error, bit pointer will jump past memory
BFINAL = readBitFromStream(bp, &in[inpos]);
unsigned long BTYPE = readBitFromStream(bp, &in[inpos]); BTYPE += 2 * readBitFromStream(bp, &in[inpos]);
if(BTYPE == 3) { error = 20; return; } //error: invalid BTYPE
else if(BTYPE == 0) inflateNoCompression(out, &in[inpos], bp, pos, in.size());
else inflateHuffmanBlock(out, &in[inpos], bp, pos, in.size(), BTYPE);
}
if(!error) out.resize(pos); //Only now we know the true size of out, resize it to that
}
void generateFixedTrees(HuffmanTree& tree, HuffmanTree& treeD) //get the tree of a deflated block with fixed tree
{
std::vector bitlen(288, 8), bitlenD(32, 5);;
for(size_t i = 144; i <= 255; i++) bitlen[i] = 9;
for(size_t i = 256; i <= 279; i++) bitlen[i] = 7;
tree.makeFromLengths(bitlen, 15);
treeD.makeFromLengths(bitlenD, 15);
}
HuffmanTree codetree, codetreeD, codelengthcodetree; //the code tree for Huffman codes, dist codes, and code length codes
unsigned long huffmanDecodeSymbol(const unsigned char* in, size_t& bp, const HuffmanTree& codetree, size_t inlength)
{ //decode a single symbol from given list of bits with given code tree. return value is the symbol
bool decoded; unsigned long ct;
for(size_t treepos = 0;;)
{
if((bp & 0x07) == 0 && (bp >> 3) > inlength) { error = 10; return 0; } //error: end reached without endcode
error = codetree.decode(decoded, ct, treepos, readBitFromStream(bp, in)); if(error) return 0; //stop, an error happened
if(decoded) return ct;
}
}
void getTreeInflateDynamic(HuffmanTree& tree, HuffmanTree& treeD, const unsigned char* in, size_t& bp, size_t inlength)
{ //get the tree of a deflated block with dynamic tree, the tree itself is also Huffman compressed with a known tree
std::vector bitlen(288, 0), bitlenD(32, 0);
if(bp >> 3 >= inlength - 2) { error = 49; return; } //the bit pointer is or will go past the memory
size_t HLIT = readBitsFromStream(bp, in, 5) + 257; //number of literal/length codes + 257
size_t HDIST = readBitsFromStream(bp, in, 5) + 1; //number of dist codes + 1
size_t HCLEN = readBitsFromStream(bp, in, 4) + 4; //number of code length codes + 4
std::vector codelengthcode(19); //lengths of tree to decode the lengths of the dynamic tree
for(size_t i = 0; i < 19; i++) codelengthcode[CLCL[i]] = (i < HCLEN) ? readBitsFromStream(bp, in, 3) : 0;
error = codelengthcodetree.makeFromLengths(codelengthcode, 7); if(error) return;
size_t i = 0, replength;
while(i < HLIT + HDIST)
{
unsigned long code = huffmanDecodeSymbol(in, bp, codelengthcodetree, inlength); if(error) return;
if(code <= 15) { if(i < HLIT) bitlen[i++] = code; else bitlenD[i++ - HLIT] = code; } //a length code
else if(code == 16) //repeat previous
{
if(bp >> 3 >= inlength) { error = 50; return; } //error, bit pointer jumps past memory
replength = 3 + readBitsFromStream(bp, in, 2);
unsigned long value; //set value to the previous code
if((i - 1) < HLIT) value = bitlen[i - 1];
else value = bitlenD[i - HLIT - 1];
for(size_t n = 0; n < replength; n++) //repeat this value in the next lengths
{
if(i >= HLIT + HDIST) { error = 13; return; } //error: i is larger than the amount of codes
if(i < HLIT) bitlen[i++] = value; else bitlenD[i++ - HLIT] = value;
}
}
else if(code == 17) //repeat "0" 3-10 times
{
if(bp >> 3 >= inlength) { error = 50; return; } //error, bit pointer jumps past memory
replength = 3 + readBitsFromStream(bp, in, 3);
for(size_t n = 0; n < replength; n++) //repeat this value in the next lengths
{
if(i >= HLIT + HDIST) { error = 14; return; } //error: i is larger than the amount of codes
if(i < HLIT) bitlen[i++] = 0; else bitlenD[i++ - HLIT] = 0;
}
}
else if(code == 18) //repeat "0" 11-138 times
{
if(bp >> 3 >= inlength) { error = 50; return; } //error, bit pointer jumps past memory
replength = 11 + readBitsFromStream(bp, in, 7);
for(size_t n = 0; n < replength; n++) //repeat this value in the next lengths
{
if(i >= HLIT + HDIST) { error = 15; return; } //error: i is larger than the amount of codes
if(i < HLIT) bitlen[i++] = 0; else bitlenD[i++ - HLIT] = 0;
}
}
else { error = 16; return; } //error: somehow an unexisting code appeared. This can never happen.
}
if(bitlen[256] == 0) { error = 64; return; } //the length of the end code 256 must be larger than 0
error = tree.makeFromLengths(bitlen, 15); if(error) return; //now we've finally got HLIT and HDIST, so generate the code trees, and the function is done
error = treeD.makeFromLengths(bitlenD, 15); if(error) return;
}
void inflateHuffmanBlock(std::vector& out, const unsigned char* in, size_t& bp, size_t& pos, size_t inlength, unsigned long btype)
{
if(btype == 1) { generateFixedTrees(codetree, codetreeD); }
else if(btype == 2) { getTreeInflateDynamic(codetree, codetreeD, in, bp, inlength); if(error) return; }
for(;;)
{
unsigned long code = huffmanDecodeSymbol(in, bp, codetree, inlength); if(error) return;
if(code == 256) return; //end code
else if(code <= 255) //literal symbol
{
if(pos >= out.size()) out.resize((pos + 1) * 2); //reserve more room
out[pos++] = (unsigned char)(code);
}
else if(code >= 257 && code <= 285) //length code
{
size_t length = LENBASE[code - 257], numextrabits = LENEXTRA[code - 257];
if((bp >> 3) >= inlength) { error = 51; return; } //error, bit pointer will jump past memory
length += readBitsFromStream(bp, in, numextrabits);
unsigned long codeD = huffmanDecodeSymbol(in, bp, codetreeD, inlength); if(error) return;
if(codeD > 29) { error = 18; return; } //error: invalid dist code (30-31 are never used)
unsigned long dist = DISTBASE[codeD], numextrabitsD = DISTEXTRA[codeD];
if((bp >> 3) >= inlength) { error = 51; return; } //error, bit pointer will jump past memory
dist += readBitsFromStream(bp, in, numextrabitsD);
size_t start = pos, back = start - dist; //backwards
if(pos + length >= out.size()) out.resize((pos + length) * 2); //reserve more room
for(size_t i = 0; i < length; i++) { out[pos++] = out[back++]; if(back >= start) back = start - dist; }
}
}
}
void inflateNoCompression(std::vector& out, const unsigned char* in, size_t& bp, size_t& pos, size_t inlength)
{
while((bp & 0x7) != 0) bp++; //go to first boundary of byte
size_t p = bp / 8;
if(p >= inlength - 4) { error = 52; return; } //error, bit pointer will jump past memory
unsigned long LEN = in[p] + 256 * in[p + 1], NLEN = in[p + 2] + 256 * in[p + 3]; p += 4;
if(LEN + NLEN != 65535) { error = 21; return; } //error: NLEN is not one's complement of LEN
if(pos + LEN >= out.size()) out.resize(pos + LEN);
if(p + LEN > inlength) { error = 23; return; } //error: reading outside of in buffer
for(unsigned long n = 0; n < LEN; n++) out[pos++] = in[p++]; //read LEN bytes of literal data
bp = p * 8;
}
};
int decompress(std::vector& out, const std::vector& in) //returns error value
{
Inflator inflator;
if(in.size() < 2) { return 53; } //error, size of zlib data too small
if((in[0] * 256 + in[1]) % 31 != 0) { return 24; } //error: 256 * in[0] + in[1] must be a multiple of 31, the FCHECK value is supposed to be made that way
unsigned long CM = in[0] & 15, CINFO = (in[0] >> 4) & 15, FDICT = (in[1] >> 5) & 1;
if(CM != 8 || CINFO > 7) { return 25; } //error: only compression method 8: inflate with sliding window of 32k is supported by the PNG spec
if(FDICT != 0) { return 26; } //error: the specification of PNG says about the zlib stream: "The additional flags shall not specify a preset dictionary."
inflator.inflate(out, in, 2);
return inflator.error; //note: adler32 checksum was skipped and ignored
}
};
struct PNG //nested functions for PNG decoding
{
struct Info
{
unsigned long width, height, colorType, bitDepth, compressionMethod, filterMethod, interlaceMethod, key_r, key_g, key_b;
bool key_defined; //is a transparent color key given?
std::vector palette;
} info;
int error;
void decode(std::vector& out, const unsigned char* in, size_t size, bool convert_to_rgba32)
{
error = 0;
if(size == 0 || in == 0) { error = 48; return; } //the given data is empty
readPngHeader(&in[0], size); if(error) return;
size_t pos = 33; //first byte of the first chunk after the header
std::vector idat; //the data from idat chunks
bool IEND = false, known_type = true;
info.key_defined = false;
while(!IEND) //loop through the chunks, ignoring unknown chunks and stopping at IEND chunk. IDAT data is put at the start of the in buffer
{
if(pos + 8 >= size) { error = 30; return; } //error: size of the in buffer too small to contain next chunk
size_t chunkLength = read32bitInt(&in[pos]); pos += 4;
if(chunkLength > 2147483647) { error = 63; return; }
if(pos + chunkLength >= size) { error = 35; return; } //error: size of the in buffer too small to contain next chunk
if(in[pos + 0] == 'I' && in[pos + 1] == 'D' && in[pos + 2] == 'A' && in[pos + 3] == 'T') //IDAT chunk, containing compressed image data
{
idat.insert(idat.end(), &in[pos + 4], &in[pos + 4 + chunkLength]);
pos += (4 + chunkLength);
}
else if(in[pos + 0] == 'I' && in[pos + 1] == 'E' && in[pos + 2] == 'N' && in[pos + 3] == 'D') { pos += 4; IEND = true; }
else if(in[pos + 0] == 'P' && in[pos + 1] == 'L' && in[pos + 2] == 'T' && in[pos + 3] == 'E') //palette chunk (PLTE)
{
pos += 4; //go after the 4 letters
info.palette.resize(4 * (chunkLength / 3));
if(info.palette.size() > (4 * 256)) { error = 38; return; } //error: palette too big
for(size_t i = 0; i < info.palette.size(); i += 4)
{
for(size_t j = 0; j < 3; j++) info.palette[i + j] = in[pos++]; //RGB
info.palette[i + 3] = 255; //alpha
}
}
else if(in[pos + 0] == 't' && in[pos + 1] == 'R' && in[pos + 2] == 'N' && in[pos + 3] == 'S') //palette transparency chunk (tRNS)
{
pos += 4; //go after the 4 letters
if(info.colorType == 3)
{
if(4 * chunkLength > info.palette.size()) { error = 39; return; } //error: more alpha values given than there are palette entries
for(size_t i = 0; i < chunkLength; i++) info.palette[4 * i + 3] = in[pos++];
}
else if(info.colorType == 0)
{
if(chunkLength != 2) { error = 40; return; } //error: this chunk must be 2 bytes for greyscale image
info.key_defined = 1; info.key_r = info.key_g = info.key_b = 256 * in[pos] + in[pos + 1]; pos += 2;
}
else if(info.colorType == 2)
{
if(chunkLength != 6) { error = 41; return; } //error: this chunk must be 6 bytes for RGB image
info.key_defined = 1;
info.key_r = 256 * in[pos] + in[pos + 1]; pos += 2;
info.key_g = 256 * in[pos] + in[pos + 1]; pos += 2;
info.key_b = 256 * in[pos] + in[pos + 1]; pos += 2;
}
else { error = 42; return; } //error: tRNS chunk not allowed for other color models
}
else //it's not an implemented chunk type, so ignore it: skip over the data
{
if(!(in[pos + 0] & 32)) { error = 69; return; } //error: unknown critical chunk (5th bit of first byte of chunk type is 0)
pos += (chunkLength + 4); //skip 4 letters and uninterpreted data of unimplemented chunk
known_type = false;
}
pos += 4; //step over CRC (which is ignored)
}
unsigned long bpp = getBpp(info);
std::vector scanlines(((info.width * (info.height * bpp + 7)) / 8) + info.height); //now the out buffer will be filled
Zlib zlib; //decompress with the Zlib decompressor
error = zlib.decompress(scanlines, idat); if(error) return; //stop if the zlib decompressor returned an error
size_t bytewidth = (bpp + 7) / 8, outlength = (info.height * info.width * bpp + 7) / 8;
out.resize(outlength); //time to fill the out buffer
unsigned char* out_ = outlength ? &out[0] : 0; //use a regular pointer to the std::vector for faster code if compiled without optimization
if(info.interlaceMethod == 0) //no interlace, just filter
{
size_t linestart = 0, linelength = (info.width * bpp + 7) / 8; //length in bytes of a scanline, excluding the filtertype byte
if(bpp >= 8) //byte per byte
for(unsigned long y = 0; y < info.height; y++)
{
unsigned long filterType = scanlines[linestart];
const unsigned char* prevline = (y == 0) ? 0 : &out_[(y - 1) * info.width * bytewidth];
unFilterScanline(&out_[linestart - y], &scanlines[linestart + 1], prevline, bytewidth, filterType, linelength); if(error) return;
linestart += (1 + linelength); //go to start of next scanline
}
else //less than 8 bits per pixel, so fill it up bit per bit
{
std::vector templine((info.width * bpp + 7) >> 3); //only used if bpp < 8
for(size_t y = 0, obp = 0; y < info.height; y++)
{
unsigned long filterType = scanlines[linestart];
const unsigned char* prevline = (y == 0) ? 0 : &out_[(y - 1) * info.width * bytewidth];
unFilterScanline(&templine[0], &scanlines[linestart + 1], prevline, bytewidth, filterType, linelength); if(error) return;
for(size_t bp = 0; bp < info.width * bpp;) setBitOfReversedStream(obp, out_, readBitFromReversedStream(bp, &templine[0]));
linestart += (1 + linelength); //go to start of next scanline
}
}
}
else //interlaceMethod is 1 (Adam7)
{
size_t passw[7] = { (info.width + 7) / 8, (info.width + 3) / 8, (info.width + 3) / 4, (info.width + 1) / 4, (info.width + 1) / 2, (info.width + 0) / 2, (info.width + 0) / 1 };
size_t passh[7] = { (info.height + 7) / 8, (info.height + 7) / 8, (info.height + 3) / 8, (info.height + 3) / 4, (info.height + 1) / 4, (info.height + 1) / 2, (info.height + 0) / 2 };
size_t passstart[7] = {0};
size_t pattern[28] = {0,4,0,2,0,1,0,0,0,4,0,2,0,1,8,8,4,4,2,2,1,8,8,8,4,4,2,2}; //values for the adam7 passes
for(int i = 0; i < 6; i++) passstart[i + 1] = passstart[i] + passh[i] * ((passw[i] ? 1 : 0) + (passw[i] * bpp + 7) / 8);
std::vector scanlineo((info.width * bpp + 7) / 8), scanlinen((info.width * bpp + 7) / 8); //"old" and "new" scanline
for(int i = 0; i < 7; i++)
adam7Pass(&out_[0], &scanlinen[0], &scanlineo[0], &scanlines[passstart[i]], info.width, pattern[i], pattern[i + 7], pattern[i + 14], pattern[i + 21], passw[i], passh[i], bpp);
}
if(convert_to_rgba32 && (info.colorType != 6 || info.bitDepth != 8)) //conversion needed
{
std::vector data = out;
error = convert(out, &data[0], info, info.width, info.height);
}
}
void readPngHeader(const unsigned char* in, size_t inlength) //read the information from the header and store it in the Info
{
if(inlength < 29) { error = 27; return; } //error: the data length is smaller than the length of the header
if(in[0] != 137 || in[1] != 80 || in[2] != 78 || in[3] != 71 || in[4] != 13 || in[5] != 10 || in[6] != 26 || in[7] != 10) { error = 28; return; } //no PNG signature
if(in[12] != 'I' || in[13] != 'H' || in[14] != 'D' || in[15] != 'R') { error = 29; return; } //error: it doesn't start with a IHDR chunk!
info.width = read32bitInt(&in[16]); info.height = read32bitInt(&in[20]);
info.bitDepth = in[24]; info.colorType = in[25];
info.compressionMethod = in[26]; if(in[26] != 0) { error = 32; return; } //error: only compression method 0 is allowed in the specification
info.filterMethod = in[27]; if(in[27] != 0) { error = 33; return; } //error: only filter method 0 is allowed in the specification
info.interlaceMethod = in[28]; if(in[28] > 1) { error = 34; return; } //error: only interlace methods 0 and 1 exist in the specification
error = checkColorValidity(info.colorType, info.bitDepth);
}
void unFilterScanline(unsigned char* recon, const unsigned char* scanline, const unsigned char* precon, size_t bytewidth, unsigned long filterType, size_t length)
{
switch(filterType)
{
case 0: for(size_t i = 0; i < length; i++) recon[i] = scanline[i]; break;
case 1:
for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i];
for(size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + recon[i - bytewidth];
break;
case 2:
if(precon) for(size_t i = 0; i < length; i++) recon[i] = scanline[i] + precon[i];
else for(size_t i = 0; i < length; i++) recon[i] = scanline[i];
break;
case 3:
if(precon)
{
for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i] + precon[i] / 2;
for(size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + ((recon[i - bytewidth] + precon[i]) / 2);
}
else
{
for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i];
for(size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + recon[i - bytewidth] / 2;
}
break;
case 4:
if(precon)
{
for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i] + paethPredictor(0, precon[i], 0);
for(size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + paethPredictor(recon[i - bytewidth], precon[i], precon[i - bytewidth]);
}
else
{
for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i];
for(size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + paethPredictor(recon[i - bytewidth], 0, 0);
}
break;
default: error = 36; return; //error: unexisting filter type given
}
}
void adam7Pass(unsigned char* out, unsigned char* linen, unsigned char* lineo, const unsigned char* in, unsigned long w, size_t passleft, size_t passtop, size_t spacex, size_t spacey, size_t passw, size_t passh, unsigned long bpp)
{ //filter and reposition the pixels into the output when the image is Adam7 interlaced. This function can only do it after the full image is already decoded. The out buffer must have the correct allocated memory size already.
if(passw == 0) return;
size_t bytewidth = (bpp + 7) / 8, linelength = 1 + ((bpp * passw + 7) / 8);
for(unsigned long y = 0; y < passh; y++)
{
unsigned char filterType = in[y * linelength], *prevline = (y == 0) ? 0 : lineo;
unFilterScanline(linen, &in[y * linelength + 1], prevline, bytewidth, filterType, (w * bpp + 7) / 8); if(error) return;
if(bpp >= 8) for(size_t i = 0; i < passw; i++) for(size_t b = 0; b < bytewidth; b++) //b = current byte of this pixel
out[bytewidth * w * (passtop + spacey * y) + bytewidth * (passleft + spacex * i) + b] = linen[bytewidth * i + b];
else for(size_t i = 0; i < passw; i++)
{
size_t obp = bpp * w * (passtop + spacey * y) + bpp * (passleft + spacex * i), bp = i * bpp;
for(size_t b = 0; b < bpp; b++) setBitOfReversedStream(obp, out, readBitFromReversedStream(bp, &linen[0]));
}
unsigned char* temp = linen; linen = lineo; lineo = temp; //swap the two buffer pointers "line old" and "line new"
}
}
static unsigned long readBitFromReversedStream(size_t& bitp, const unsigned char* bits) { unsigned long result = (bits[bitp >> 3] >> (7 - (bitp & 0x7))) & 1; bitp++; return result;}
static unsigned long readBitsFromReversedStream(size_t& bitp, const unsigned char* bits, unsigned long nbits)
{
unsigned long result = 0;
for(size_t i = nbits - 1; i < nbits; i--) result += ((readBitFromReversedStream(bitp, bits)) << i);
return result;
}
void setBitOfReversedStream(size_t& bitp, unsigned char* bits, unsigned long bit) { bits[bitp >> 3] |= (bit << (7 - (bitp & 0x7))); bitp++; }
unsigned long read32bitInt(const unsigned char* buffer) { return (buffer[0] << 24) | (buffer[1] << 16) | (buffer[2] << 8) | buffer[3]; }
int checkColorValidity(unsigned long colorType, unsigned long bd) //return type is a LodePNG error code
{
if((colorType == 2 || colorType == 4 || colorType == 6)) { if(!(bd == 8 || bd == 16)) return 37; else return 0; }
else if(colorType == 0) { if(!(bd == 1 || bd == 2 || bd == 4 || bd == 8 || bd == 16)) return 37; else return 0; }
else if(colorType == 3) { if(!(bd == 1 || bd == 2 || bd == 4 || bd == 8 )) return 37; else return 0; }
else return 31; //unexisting color type
}
unsigned long getBpp(const Info& info)
{
if(info.colorType == 2) return (3 * info.bitDepth);
else if(info.colorType >= 4) return (info.colorType - 2) * info.bitDepth;
else return info.bitDepth;
}
int convert(std::vector& out, const unsigned char* in, Info& infoIn, unsigned long w, unsigned long h)
{ //converts from any color type to 32-bit. return value = LodePNG error code
size_t numpixels = w * h, bp = 0;
out.resize(numpixels * 4);
unsigned char* out_ = out.empty() ? 0 : &out[0]; //faster if compiled without optimization
if(infoIn.bitDepth == 8 && infoIn.colorType == 0) //greyscale
for(size_t i = 0; i < numpixels; i++)
{
out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[i];
out_[4 * i + 3] = (infoIn.key_defined && in[i] == infoIn.key_r) ? 0 : 255;
}
else if(infoIn.bitDepth == 8 && infoIn.colorType == 2) //RGB color
for(size_t i = 0; i < numpixels; i++)
{
for(size_t c = 0; c < 3; c++) out_[4 * i + c] = in[3 * i + c];
out_[4 * i + 3] = (infoIn.key_defined == 1 && in[3 * i + 0] == infoIn.key_r && in[3 * i + 1] == infoIn.key_g && in[3 * i + 2] == infoIn.key_b) ? 0 : 255;
}
else if(infoIn.bitDepth == 8 && infoIn.colorType == 3) //indexed color (palette)
for(size_t i = 0; i < numpixels; i++)
{
if(4U * in[i] >= infoIn.palette.size()) return 46;
for(size_t c = 0; c < 4; c++) out_[4 * i + c] = infoIn.palette[4 * in[i] + c]; //get rgb colors from the palette
}
else if(infoIn.bitDepth == 8 && infoIn.colorType == 4) //greyscale with alpha
for(size_t i = 0; i < numpixels; i++)
{
out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[2 * i + 0];
out_[4 * i + 3] = in[2 * i + 1];
}
else if(infoIn.bitDepth == 8 && infoIn.colorType == 6) for(size_t i = 0; i < numpixels; i++) for(size_t c = 0; c < 4; c++) out_[4 * i + c] = in[4 * i + c]; //RGB with alpha
else if(infoIn.bitDepth == 16 && infoIn.colorType == 0) //greyscale
for(size_t i = 0; i < numpixels; i++)
{
out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[2 * i];
out_[4 * i + 3] = (infoIn.key_defined && 256U * in[i] + in[i + 1] == infoIn.key_r) ? 0 : 255;
}
else if(infoIn.bitDepth == 16 && infoIn.colorType == 2) //RGB color
for(size_t i = 0; i < numpixels; i++)
{
for(size_t c = 0; c < 3; c++) out_[4 * i + c] = in[6 * i + 2 * c];
out_[4 * i + 3] = (infoIn.key_defined && 256U*in[6*i+0]+in[6*i+1] == infoIn.key_r && 256U*in[6*i+2]+in[6*i+3] == infoIn.key_g && 256U*in[6*i+4]+in[6*i+5] == infoIn.key_b) ? 0 : 255;
}
else if(infoIn.bitDepth == 16 && infoIn.colorType == 4) //greyscale with alpha
for(size_t i = 0; i < numpixels; i++)
{
out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[4 * i]; //most significant byte
out_[4 * i + 3] = in[4 * i + 2];
}
else if(infoIn.bitDepth == 16 && infoIn.colorType == 6) for(size_t i = 0; i < numpixels; i++) for(size_t c = 0; c < 4; c++) out_[4 * i + c] = in[8 * i + 2 * c]; //RGB with alpha
else if(infoIn.bitDepth < 8 && infoIn.colorType == 0) //greyscale
for(size_t i = 0; i < numpixels; i++)
{
unsigned long value = (readBitsFromReversedStream(bp, in, infoIn.bitDepth) * 255) / ((1 << infoIn.bitDepth) - 1); //scale value from 0 to 255
out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = (unsigned char)(value);
out_[4 * i + 3] = (infoIn.key_defined && value && ((1U << infoIn.bitDepth) - 1U) == infoIn.key_r && ((1U << infoIn.bitDepth) - 1U)) ? 0 : 255;
}
else if(infoIn.bitDepth < 8 && infoIn.colorType == 3) //palette
for(size_t i = 0; i < numpixels; i++)
{
unsigned long value = readBitsFromReversedStream(bp, in, infoIn.bitDepth);
if(4 * value >= infoIn.palette.size()) return 47;
for(size_t c = 0; c < 4; c++) out_[4 * i + c] = infoIn.palette[4 * value + c]; //get rgb colors from the palette
}
return 0;
}
unsigned char paethPredictor(short a, short b, short c) //Paeth predicter, used by PNG filter type 4
{
short p = a + b - c, pa = p > a ? (p - a) : (a - p), pb = p > b ? (p - b) : (b - p), pc = p > c ? (p - c) : (c - p);
return (unsigned char)((pa <= pb && pa <= pc) ? a : pb <= pc ? b : c);
}
};
PNG decoder; decoder.decode(out_image, in_png, in_size, convert_to_rgba32);
image_width = decoder.info.width; image_height = decoder.info.height;
return decoder.error;
}
//an example using the PNG loading function:
#include
#include
void loadFile(std::vector& buffer, const std::string& filename) //designed for loading files from hard disk in an std::vector
{
std::ifstream file(filename.c_str(), std::ios::in|std::ios::binary|std::ios::ate);
//get filesize
std::streamsize size = 0;
if(file.seekg(0, std::ios::end).good()) size = file.tellg();
if(file.seekg(0, std::ios::beg).good()) size -= file.tellg();
//read contents of the file into the vector
if(size > 0)
{
buffer.resize((size_t)size);
file.read((char*)(&buffer[0]), size);
}
else buffer.clear();
}
int main(int argc, char *argv[])
{
const char* filename = argc > 1 ? argv[1] : "test.png";
//load and decode
std::vector buffer, image;
loadFile(buffer, filename);
unsigned long w, h;
int error = decodePNG(image, w, h, buffer.empty() ? 0 : &buffer[0], (unsigned long)buffer.size());
//if there's an error, display it
if(error != 0) std::cout << "error: " << error << std::endl;
//the pixels are now in the vector "image", use it as texture, draw it, ...
if(image.size() > 4) std::cout << "width: " << w << " height: " << h << " first pixel: " << std::hex << int(image[0]) << int(image[1]) << int(image[2]) << int(image[3]) << std::endl;
}
/*
//this is test code, it displays the pixels of a 1 bit PNG. To use it, set the flag convert_to_rgba32 to false and load a 1-bit PNG image with a small size (so that its ASCII representation can fit in a console window)
for(int y = 0; y < h; y++)
{
for(int x = 0; x < w; x++)
{
int i = y * h + x;
std::cout << (((image[i/8] >> (7-i%8)) & 1) ? '.' : '#');
}
std::cout << std::endl;
}
*/
===== Another version =====
https://searchcode.com/codesearch/view/71804966/
// picoPNG version 20080503 (cleaned up and ported to c by kaitek)
// Copyright (c) 2005-2008 Lode Vandevenne
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
#include
#include "picopng.h"
/*************************************************************************************************/
typedef struct png_alloc_node {
struct png_alloc_node *prev, *next;
VOID *addr;
UINT32 size;
} png_alloc_node_t;
png_alloc_node_t *png_alloc_head = NULL;
png_alloc_node_t *png_alloc_tail = NULL;
png_alloc_node_t *
png_alloc_find_node (
VOID *addr
)
{
png_alloc_node_t *node;
for (node = png_alloc_head; node; node = node->next)
if (node->addr == addr)
break;
return node;
}
VOID
png_alloc_add_node (
VOID *addr,
UINT32 size
)
{
png_alloc_node_t *node;
if (png_alloc_find_node (addr))
return;
node = AllocateZeroPool (sizeof (png_alloc_node_t));
node->addr = addr;
node->size = size;
node->prev = png_alloc_tail;
node->next = NULL;
png_alloc_tail = node;
if (node->prev)
node->prev->next = node;
if (!png_alloc_head)
png_alloc_head = node;
}
VOID
png_alloc_remove_node (
png_alloc_node_t * node
)
{
if (node->prev)
node->prev->next = node->next;
if (node->next)
node->next->prev = node->prev;
if (node == png_alloc_head)
png_alloc_head = node->next;
if (node == png_alloc_tail)
png_alloc_tail = node->prev;
node->prev = node->next = node->addr = NULL;
FreePool (node);
}
VOID *
png_alloc_malloc (
UINT32 size
)
{
VOID *addr = AllocateZeroPool (size);
png_alloc_add_node (addr, size);
return addr;
}
VOID *
png_alloc_realloc (
VOID *addr,
UINT32 size
)
{
VOID *new_addr;
if (!addr)
return png_alloc_malloc (size);
new_addr = AllocateZeroPool (size);
if (new_addr != addr) {
png_alloc_node_t *old_node;
old_node = png_alloc_find_node (addr);
png_alloc_remove_node (old_node);
png_alloc_add_node (new_addr, size);
}
return new_addr;
}
VOID
png_alloc_free (
VOID *addr
)
{
png_alloc_node_t *node = png_alloc_find_node (addr);
if (!node)
return;
png_alloc_remove_node (node);
FreePool (addr);
}
VOID
png_alloc_free_all (
)
{
while (png_alloc_tail) {
VOID *addr = png_alloc_tail->addr;
png_alloc_remove_node (png_alloc_tail);
FreePool (addr);
}
}
/*************************************************************************************************/
VOID
vector32_cleanup (
vector32_t * p
)
{
p->size = p->allocsize = 0;
if (p->data)
png_alloc_free (p->data);
p->data = NULL;
}
UINT32
vector32_resize (
vector32_t * p,
UINT32 size
)
{ // returns 1 if success, 0 if failure ==> nothing done
if (size * sizeof (UINT32) > p->allocsize) {
UINT32 newsize = size * sizeof (UINT32) * 2;
VOID *data = png_alloc_realloc (p->data, newsize);
if (data) {
p->allocsize = newsize;
p->data = (UINT32 *) data;
p->size = size;
}
else
return 0;
}
else
p->size = size;
return 1;
}
UINT32
vector32_resizev (
vector32_t * p,
UINT32 size,
UINT32 value
)
{ // resize and give all new elements the value
UINT32 oldsize = p->size, i;
if (!vector32_resize (p, size))
return 0;
for (i = oldsize; i < size; i++)
p->data[i] = value;
return 1;
}
VOID
vector32_init (
vector32_t * p
)
{
p->data = NULL;
p->size = p->allocsize = 0;
}
vector32_t *
vector32_new (
UINT32 size,
UINT32 value
)
{
vector32_t *p = png_alloc_malloc (sizeof (vector32_t));
vector32_init (p);
if (size && !vector32_resizev (p, size, value))
return NULL;
return p;
}
/*************************************************************************************************/
VOID
vector8_cleanup (
vector8_t * p
)
{
p->size = p->allocsize = 0;
if (p->data)
png_alloc_free (p->data);
p->data = NULL;
}
UINT32
vector8_resize (
vector8_t * p,
UINT32 size
)
{ // returns 1 if success, 0 if failure ==> nothing done
// xxx: the use of sizeof UINT32 here seems like a bug (this descends from the lodepng vector
// compatibility functions which do the same). without this there is corruption in certain cases,
// so this was probably done to cover up allocation bug(s) in the original picopng code!
if (size * sizeof (UINT32) > p->allocsize) {
UINT32 newsize = size * sizeof (UINT32) * 2;
VOID *data = png_alloc_realloc (p->data, newsize);
if (data) {
p->allocsize = newsize;
p->data = (UINT8 *) data;
p->size = size;
}
else
return 0; // error: not enough memory
}
else
p->size = size;
return 1;
}
UINT32
vector8_resizev (
vector8_t * p,
UINT32 size,
UINT8 value
)
{ // resize and give all new elements the value
UINT32 oldsize = p->size, i;
if (!vector8_resize (p, size))
return 0;
for (i = oldsize; i < size; i++)
p->data[i] = value;
return 1;
}
VOID
vector8_init (
vector8_t * p
)
{
p->data = NULL;
p->size = p->allocsize = 0;
}
vector8_t *
vector8_new (
UINT32 size,
UINT8 value
)
{
vector8_t *p = png_alloc_malloc (sizeof (vector8_t));
vector8_init (p);
if (size && !vector8_resizev (p, size, value))
return NULL;
return p;
}
vector8_t *
vector8_copy (
vector8_t * p
)
{
vector8_t *q = vector8_new (p->size, 0);
UINT32 n;
for (n = 0; n < q->size; n++)
q->data[n] = p->data[n];
return q;
}
/*************************************************************************************************/
const UINT32 LENBASE[29] =
{ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51,
59, 67, 83, 99, 115, 131, 163, 195, 227, 258
};
const UINT32 LENEXTRA[29] =
{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
4, 5, 5, 5, 5, 0
};
const UINT32 DISTBASE[30] =
{ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385,
513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577
};
const UINT32 DISTEXTRA[30] =
{ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
10, 10, 11, 11, 12, 12, 13, 13
};
// code length code lengths
const UINT32 CLCL[19] =
{ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
/*************************************************************************************************/
typedef struct {
// 2D representation of a huffman tree: The one dimension is "0" or "1", the other contains all
// nodes and leaves of the tree.
vector32_t *tree2d;
} HuffmanTree;
HuffmanTree *
HuffmanTree_new (
)
{
HuffmanTree *tree = png_alloc_malloc (sizeof (HuffmanTree));
tree->tree2d = NULL;
return tree;
}
int
HuffmanTree_makeFromLengths (
HuffmanTree * tree,
const vector32_t * bitlen,
UINT32 maxbitlen
)
{ // make tree given the lengths
UINT32 bits, n, i;
vector32_t *tree2d;
vector32_t *tree1d, *blcount, *nextcode;
UINT32 numcodes = (UINT32) bitlen->size, treepos = 0, nodefilled = 0;
tree1d = vector32_new (numcodes, 0);
blcount = vector32_new (maxbitlen + 1, 0);
nextcode = vector32_new (maxbitlen + 1, 0);
for (bits = 0; bits < numcodes; bits++)
blcount->data[bitlen->data[bits]]++; // count number of instances of each code length
for (bits = 1; bits <= maxbitlen; bits++)
nextcode->data[bits] =
(nextcode->data[bits - 1] + blcount->data[bits - 1]) << 1;
for (n = 0; n < numcodes; n++)
if (bitlen->data[n] != 0)
tree1d->data[n] = nextcode->data[bitlen->data[n]]++; // generate all the codes
// 0x7fff here means the tree2d isn't filled there yet
tree2d = vector32_new (numcodes * 2, 0x7fff);
tree->tree2d = tree2d;
for (n = 0; n < numcodes; n++) // the codes
for (i = 0; i < bitlen->data[n]; i++) { // the bits for this code
UINT32 bit = (tree1d->data[n] >> (bitlen->data[n] - i - 1)) & 1;
if (treepos > numcodes - 2)
return 55;
if (tree2d->data[2 * treepos + bit] == 0x7fff) { // not yet filled in
if (i + 1 == bitlen->data[n]) { // last bit
tree2d->data[2 * treepos + bit] = n;
treepos = 0;
}
else { // addresses are encoded as values > numcodes
tree2d->data[2 * treepos + bit] = ++nodefilled + numcodes;
treepos = nodefilled;
}
}
else // subtract numcodes from address to get address value
treepos = tree2d->data[2 * treepos + bit] - numcodes;
}
return 0;
}
int
HuffmanTree_decode (
const HuffmanTree * tree,
BOOLEAN *decoded,
UINT32 *result,
UINT32 *treepos,
UINT32 bit
)
{ // Decodes a symbol from the tree
const vector32_t *tree2d = tree->tree2d;
UINT32 numcodes = (UINT32) tree2d->size / 2;
if (*treepos >= numcodes)
return 11; // error: you appeared outside the codetree
*result = tree2d->data[2 * (*treepos) + bit];
*decoded = (*result < numcodes);
*treepos = *decoded ? 0 : *result - numcodes;
return 0;
}
/*************************************************************************************************/
int Inflator_error;
UINT32
Zlib_readBitFromStream (
UINT32 *bitp,
const UINT8 *bits
)
{
UINT32 result = (bits[*bitp >> 3] >> (*bitp & 0x7)) & 1;
(*bitp)++;
return result;
}
UINT32
Zlib_readBitsFromStream (
UINT32 *bitp,
const UINT8 *bits,
UINT32 nbits
)
{
UINT32 i, result = 0;
for (i = 0; i < nbits; i++)
result += (Zlib_readBitFromStream (bitp, bits)) << i;
return result;
}
VOID
Inflator_generateFixedTrees (
HuffmanTree * tree,
HuffmanTree * treeD
)
{ // get the tree of a deflated block with fixed tree
UINT32 i;
vector32_t *bitlen, *bitlenD;
bitlen = vector32_new (288, 8);
bitlenD = vector32_new (32, 5);
for (i = 144; i <= 255; i++)
bitlen->data[i] = 9;
for (i = 256; i <= 279; i++)
bitlen->data[i] = 7;
HuffmanTree_makeFromLengths (tree, bitlen, 15);
HuffmanTree_makeFromLengths (treeD, bitlenD, 15);
}
UINT32
Inflator_huffmanDecodeSymbol (
const UINT8 *in,
UINT32 *bp,
const HuffmanTree * codetree,
UINT32 inlength
)
{ // decode a single symbol from given list of bits with given code tree. returns the symbol
BOOLEAN decoded = FALSE;
UINT32 ct = 0;
UINT32 treepos = 0;
for (;;) {
if ((*bp & 0x07) == 0 && (*bp >> 3) > inlength) {
Inflator_error = 10; // error: end reached without endcode
return 0;
}
Inflator_error =
HuffmanTree_decode (codetree, &decoded, &ct, &treepos,
Zlib_readBitFromStream (bp, in));
if (Inflator_error)
return 0; // stop, an error happened
if (decoded)
return ct;
}
}
VOID
Inflator_getTreeInflateDynamic (
HuffmanTree * tree,
HuffmanTree * treeD,
const UINT8 *in,
UINT32 *bp,
UINT32 inlength
)
{ // get the tree of a deflated block with dynamic tree, the tree itself is also Huffman
// compressed with a known tree
UINT32 i, n;
HuffmanTree *codelengthcodetree = HuffmanTree_new (); // the code tree for code length codes
vector32_t *bitlen, *bitlenD;
UINT32 HLIT; // number of literal/length codes + 257
UINT32 HDIST; // number of dist codes + 1
UINT32 HCLEN; // number of code length codes + 4
vector32_t *codelengthcode; // lengths of tree to decode the lengths of the dynamic tree
UINT32 replength;
bitlen = vector32_new (288, 0);
bitlenD = vector32_new (32, 0);
if (*bp >> 3 >= inlength - 2) {
Inflator_error = 49; // the bit pointer is or will go past the memory
return;
}
HLIT = Zlib_readBitsFromStream (bp, in, 5) + 257; // number of literal/length codes + 257
HDIST = Zlib_readBitsFromStream (bp, in, 5) + 1; // number of dist codes + 1
HCLEN = Zlib_readBitsFromStream (bp, in, 4) + 4; // number of code length codes + 4
codelengthcode = vector32_new (19, 0);
for (i = 0; i < 19; i++)
codelengthcode->data[CLCL[i]] =
(i < HCLEN) ? Zlib_readBitsFromStream (bp, in, 3) : 0;
Inflator_error =
HuffmanTree_makeFromLengths (codelengthcodetree, codelengthcode, 7);
if (Inflator_error)
return;
for (i = 0; i < HLIT + HDIST;) {
UINT32 code =
Inflator_huffmanDecodeSymbol (in, bp, codelengthcodetree, inlength);
if (Inflator_error)
return;
if (code <= 15) { // a length code
if (i < HLIT)
bitlen->data[i++] = code;
else
bitlenD->data[i++ - HLIT] = code;
}
else if (code == 16) { // repeat previous
UINT32 value; // set value to the previous code
if (*bp >> 3 >= inlength) {
Inflator_error = 50; // error, bit pointer jumps past memory
return;
}
replength = 3 + Zlib_readBitsFromStream (bp, in, 2);
if ((i - 1) < HLIT)
value = bitlen->data[i - 1];
else
value = bitlenD->data[i - HLIT - 1];
for (n = 0; n < replength; n++) { // repeat this value in the next lengths
if (i >= HLIT + HDIST) {
Inflator_error = 13; // error: i is larger than the amount of codes
return;
}
if (i < HLIT)
bitlen->data[i++] = value;
else
bitlenD->data[i++ - HLIT] = value;
}
}
else if (code == 17) { // repeat "0" 3-10 times
if (*bp >> 3 >= inlength) {
Inflator_error = 50; // error, bit pointer jumps past memory
return;
}
replength = 3 + Zlib_readBitsFromStream (bp, in, 3);
for (n = 0; n < replength; n++) { // repeat this value in the next lengths
if (i >= HLIT + HDIST) {
Inflator_error = 14; // error: i is larger than the amount of codes
return;
}
if (i < HLIT)
bitlen->data[i++] = 0;
else
bitlenD->data[i++ - HLIT] = 0;
}
}
else if (code == 18) { // repeat "0" 11-138 times
if (*bp >> 3 >= inlength) {
Inflator_error = 50; // error, bit pointer jumps past memory
return;
}
replength = 11 + Zlib_readBitsFromStream (bp, in, 7);
for (n = 0; n < replength; n++) { // repeat this value in the next lengths
if (i >= HLIT + HDIST) {
Inflator_error = 15; // error: i is larger than the amount of codes
return;
}
if (i < HLIT)
bitlen->data[i++] = 0;
else
bitlenD->data[i++ - HLIT] = 0;
}
}
else {
Inflator_error = 16; // error: an nonexitent code appeared. This can never happen.
return;
}
}
if (bitlen->data[256] == 0) {
Inflator_error = 64; // the length of the end code 256 must be larger than 0
return;
}
// now we've finally got HLIT and HDIST, so generate the code trees, and the function is done
Inflator_error = HuffmanTree_makeFromLengths (tree, bitlen, 15);
if (Inflator_error)
return;
Inflator_error = HuffmanTree_makeFromLengths (treeD, bitlenD, 15);
if (Inflator_error)
return;
}
VOID
Inflator_inflateHuffmanBlock (
vector8_t * out,
const UINT8 *in,
UINT32 *bp,
UINT32 *pos,
UINT32 inlength,
UINT32 btype
)
{
HuffmanTree *codetree, *codetreeD; // the code tree for Huffman codes, dist codes
codetree = HuffmanTree_new ();
codetreeD = HuffmanTree_new ();
if (btype == 1)
Inflator_generateFixedTrees (codetree, codetreeD);
else if (btype == 2) {
Inflator_getTreeInflateDynamic (codetree, codetreeD, in, bp, inlength);
if (Inflator_error)
return;
}
for (;;) {
UINT32 code = Inflator_huffmanDecodeSymbol (in, bp, codetree, inlength);
if (Inflator_error)
return;
if (code == 256) // end code
return;
else if (code <= 255) { // literal symbol
if (*pos >= out->size)
vector8_resize (out, (*pos + 1) * 2); // reserve more room
out->data[(*pos)++] = (UINT8) code;
}
else if (code >= 257 && code <= 285) { // length code
UINT32 codeD;
UINT32 dist;
UINT32 numextrabitsD;
UINT32 start;
UINT32 back;
UINT32 i;
UINT32 length = LENBASE[code - 257], numextrabits = LENEXTRA[code - 257];
if ((*bp >> 3) >= inlength) {
Inflator_error = 51; // error, bit pointer will jump past memory
return;
}
length += Zlib_readBitsFromStream (bp, in, numextrabits);
codeD = Inflator_huffmanDecodeSymbol (in, bp, codetreeD, inlength);
if (Inflator_error)
return;
if (codeD > 29) {
Inflator_error = 18; // error: invalid dist code (30-31 are never used)
return;
}
dist = DISTBASE[codeD];
numextrabitsD = DISTEXTRA[codeD];
if ((*bp >> 3) >= inlength) {
Inflator_error = 51; // error, bit pointer will jump past memory
return;
}
dist += Zlib_readBitsFromStream (bp, in, numextrabitsD);
start = *pos;
back = start - dist; // backwards
if (*pos + length >= out->size)
vector8_resize (out, (*pos + length) * 2); // reserve more room
for (i = 0; i < length; i++) {
out->data[(*pos)++] = out->data[back++];
if (back >= start)
back = start - dist;
}
}
}
}
VOID
Inflator_inflateNoCompression (
vector8_t * out,
const UINT8 *in,
UINT32 *bp,
UINT32 *pos,
UINT32 inlength
)
{
UINT32 p;
UINT32 n;
UINT32 LEN;
UINT32 NLEN;
while ((*bp & 0x7) != 0)
(*bp)++; // go to first boundary of byte
p = *bp / 8;
if (p >= inlength - 4) {
Inflator_error = 52; // error, bit pointer will jump past memory
return;
}
LEN = in[p] + 256 * in[p + 1];
NLEN = in[p + 2] + 256 * in[p + 3];
p += 4;
if (LEN + NLEN != 65535) {
Inflator_error = 21; // error: NLEN is not one's complement of LEN
return;
}
if (*pos + LEN >= out->size)
vector8_resize (out, *pos + LEN);
if (p + LEN > inlength) {
Inflator_error = 23; // error: reading outside of in buffer
return;
}
for (n = 0; n < LEN; n++)
out->data[(*pos)++] = in[p++]; // read LEN bytes of literal data
*bp = p * 8;
}
VOID
Inflator_inflate (
vector8_t * out,
const vector8_t * in,
UINT32 inpos
)
{
UINT32 bp = 0, pos = 0; // bit pointer and byte pointer
UINT32 BFINAL = 0;
Inflator_error = 0;
while (!BFINAL && !Inflator_error) {
UINT32 BTYPE;
if (bp >> 3 >= in->size) {
Inflator_error = 52; // error, bit pointer will jump past memory
return;
}
BFINAL = Zlib_readBitFromStream (&bp, &in->data[inpos]);
BTYPE = Zlib_readBitFromStream (&bp, &in->data[inpos]);
BTYPE += 2 * Zlib_readBitFromStream (&bp, &in->data[inpos]);
if (BTYPE == 3) {
Inflator_error = 20; // error: invalid BTYPE
return;
}
else if (BTYPE == 0)
Inflator_inflateNoCompression (out, &in->data[inpos], &bp, &pos,
in->size);
else
Inflator_inflateHuffmanBlock (out, &in->data[inpos], &bp, &pos, in->size,
BTYPE);
}
if (!Inflator_error)
vector8_resize (out, pos); // Only now we know the true size of out, resize it to that
}
/*************************************************************************************************/
UINT8
Zlib_decompress (
vector8_t * out,
const vector8_t * in
) // returns error value
{
UINT32 CM, CINFO, FDICT;
if (in->size < 2)
return 53; // error, size of zlib data too small
if ((in->data[0] * 256 + in->data[1]) % 31 != 0)
// error: 256 * in->data[0] + in->data[1] must be a multiple of 31, the FCHECK value is
// supposed to be made that way
return 24;
CM = in->data[0] & 15;
CINFO = (in->data[0] >> 4) & 15;
FDICT = (in->data[1] >> 5) & 1;
if (CM != 8 || CINFO > 7)
// error: only compression method 8: inflate with sliding window of 32k is supported by
// the PNG spec
return 25;
if (FDICT != 0)
// error: the specification of PNG says about the zlib stream: "The additional flags shall
// not specify a preset dictionary."
return 26;
Inflator_inflate (out, in, 2);
return (UINT8) Inflator_error; // note: adler32 checksum was skipped and ignored
}
/*************************************************************************************************/
#define PNG_SIGNATURE 0x0a1a0a0d474e5089ull
#define CHUNK_IHDR 0x52444849
#define CHUNK_IDAT 0x54414449
#define CHUNK_IEND 0x444e4549
#define CHUNK_PLTE 0x45544c50
#define CHUNK_tRNS 0x534e5274
UINT8 PNG_error;
UINT32
PNG_readBitFromReversedStream (
UINT32 *bitp,
const UINT8 *bits
)
{
UINT32 result = (bits[*bitp >> 3] >> (7 - (*bitp & 0x7))) & 1;
(*bitp)++;
return result;
}
UINT32
PNG_readBitsFromReversedStream (
UINT32 *bitp,
const UINT8 *bits,
UINT32 nbits
)
{
UINT32 i, result = 0;
for (i = nbits - 1; i < nbits; i--)
result += ((PNG_readBitFromReversedStream (bitp, bits)) << i);
return result;
}
VOID
PNG_setBitOfReversedStream (
UINT32 *bitp,
UINT8 *bits,
UINT32 bit
)
{
bits[*bitp >> 3] |= (bit << (7 - (*bitp & 0x7)));
(*bitp)++;
}
UINT32
PNG_read32bitInt (
const UINT8 *buffer
)
{
return (buffer[0] << 24) | (buffer[1] << 16) | (buffer[2] << 8) | buffer[3];
}
UINT8
PNG_checkColorValidity (
UINT32 colorType,
UINT32 bd
) // return type is a LodePNG error code
{
if ((colorType == 2 || colorType == 4 || colorType == 6)) {
if (!(bd == 8 || bd == 16))
return 37;
else
return 0;
}
else if (colorType == 0) {
if (!(bd == 1 || bd == 2 || bd == 4 || bd == 8 || bd == 16))
return 37;
else
return 0;
}
else if (colorType == 3) {
if (!(bd == 1 || bd == 2 || bd == 4 || bd == 8))
return 37;
else
return 0;
}
else
return 31; // nonexistent color type
}
UINT32
PNG_getBpp (
const PNG_info_t * info
)
{
UINT32 bitDepth, colorType;
bitDepth = info->bitDepth;
colorType = info->colorType;
if (colorType == 2)
return (3 * bitDepth);
else if (colorType >= 4)
return (colorType - 2) * bitDepth;
else
return bitDepth;
}
VOID
PNG_readPngHeader (
PNG_info_t * info,
const UINT8 *in,
UINT32 inlength
)
{ // read the information from the header and store it in the Info
if (inlength < 29) {
PNG_error = 27; // error: the data length is smaller than the length of the header
return;
}
if (*(UINT64 *) in != PNG_SIGNATURE) {
PNG_error = 28; // no PNG signature
return;
}
if (*(UINT32 *) &in[12] != CHUNK_IHDR) {
PNG_error = 29; // error: it doesn't start with a IHDR chunk!
return;
}
info->width = PNG_read32bitInt (&in[16]);
info->height = PNG_read32bitInt (&in[20]);
info->bitDepth = in[24];
info->colorType = in[25];
info->compressionMethod = in[26];
if (in[26] != 0) {
PNG_error = 32; // error: only compression method 0 is allowed in the specification
return;
}
info->filterMethod = in[27];
if (in[27] != 0) {
PNG_error = 33; // error: only filter method 0 is allowed in the specification
return;
}
info->interlaceMethod = in[28];
if (in[28] > 1) {
PNG_error = 34; // error: only interlace methods 0 and 1 exist in the specification
return;
}
PNG_error = PNG_checkColorValidity (info->colorType, info->bitDepth);
}
int
PNG_paethPredictor (
int a,
int b,
int c
) // Paeth predicter, used by PNG filter type 4
{
int p, pa, pb, pc;
p = a + b - c;
pa = p > a ? (p - a) : (a - p);
pb = p > b ? (p - b) : (b - p);
pc = p > c ? (p - c) : (c - p);
return (pa <= pb && pa <= pc) ? a : (pb <= pc ? b : c);
}
VOID
PNG_unFilterScanline (
UINT8 *recon,
const UINT8 *scanline,
const UINT8 *precon,
UINT32 bytewidth,
UINT32 filterType,
UINT32 length
)
{
UINT32 i;
switch (filterType) {
case 0:
for (i = 0; i < length; i++)
recon[i] = scanline[i];
break;
case 1:
for (i = 0; i < bytewidth; i++)
recon[i] = scanline[i];
for (i = bytewidth; i < length; i++)
recon[i] = scanline[i] + recon[i - bytewidth];
break;
case 2:
if (precon)
for (i = 0; i < length; i++)
recon[i] = scanline[i] + precon[i];
else
for (i = 0; i < length; i++)
recon[i] = scanline[i];
break;
case 3:
if (precon) {
for (i = 0; i < bytewidth; i++)
recon[i] = scanline[i] + precon[i] / 2;
for (i = bytewidth; i < length; i++)
recon[i] = scanline[i] + ((recon[i - bytewidth] + precon[i]) / 2);
}
else {
for (i = 0; i < bytewidth; i++)
recon[i] = scanline[i];
for (i = bytewidth; i < length; i++)
recon[i] = scanline[i] + recon[i - bytewidth] / 2;
}
break;
case 4:
if (precon) {
for (i = 0; i < bytewidth; i++)
recon[i] = (UINT8) (scanline[i] + PNG_paethPredictor (0, precon[i], 0));
for (i = bytewidth; i < length; i++)
recon[i] =
(UINT8) (scanline[i] +
PNG_paethPredictor (recon[i - bytewidth], precon[i],
precon[i - bytewidth]));
}
else {
for (i = 0; i < bytewidth; i++)
recon[i] = scanline[i];
for (i = bytewidth; i < length; i++)
recon[i] =
(UINT8) (scanline[i] +
PNG_paethPredictor (recon[i - bytewidth], 0, 0));
}
break;
default:
PNG_error = 36; // error: nonexistent filter type given
return;
}
}
VOID
PNG_adam7Pass (
UINT8 *out,
UINT8 *linen,
UINT8 *lineo,
const UINT8 *in,
UINT32 w,
UINT32 passleft,
UINT32 passtop,
UINT32 spacex,
UINT32 spacey,
UINT32 passw,
UINT32 passh,
UINT32 bpp
)
{ // filter and reposition the pixels into the output when the image is Adam7 interlaced. This
// function can only do it after the full image is already decoded. The out buffer must have
// the correct allocated memory size already.
UINT32 bytewidth, linelength;
UINT32 y;
UINT8 *temp;
if (passw == 0)
return;
bytewidth = (bpp + 7) / 8;
linelength = 1 + ((bpp * passw + 7) / 8);
for (y = 0; y < passh; y++) {
UINT32 i, b;
UINT8 filterType = in[y * linelength], *prevline = (y == 0) ? 0 : lineo;
PNG_unFilterScanline (linen, &in[y * linelength + 1], prevline, bytewidth,
filterType, (w * bpp + 7) / 8);
if (PNG_error)
return;
if (bpp >= 8)
for (i = 0; i < passw; i++)
for (b = 0; b < bytewidth; b++) // b = current byte of this pixel
out[bytewidth * w * (passtop + spacey * y) +
bytewidth * (passleft + spacex * i) + b] =
linen[bytewidth * i + b];
else
for (i = 0; i < passw; i++) {
UINT32 obp, bp;
obp = bpp * w * (passtop + spacey * y) + bpp * (passleft + spacex * i);
bp = i * bpp;
for (b = 0; b < bpp; b++)
PNG_setBitOfReversedStream (&obp, out,
PNG_readBitFromReversedStream (&bp,
linen));
}
temp = linen;
linen = lineo;
lineo = temp; // swap the two buffer pointers "line old" and "line new"
}
}
UINT8
PNG_convert (
const PNG_info_t * info,
vector8_t * out,
const UINT8 *in
)
{ // converts from any color type to 32-bit. return value = LodePNG error code
UINT32 i, c;
UINT32 bitDepth, colorType;
UINT32 numpixels, bp;
UINT8 *out_data = out->size ? out->data : 0;
bitDepth = info->bitDepth;
colorType = info->colorType;
numpixels = info->width * info->height;
bp = 0;
vector8_resize (out, numpixels * 4);
if (bitDepth == 8 && colorType == 0) // greyscale
for (i = 0; i < numpixels; i++) {
out_data[4 * i + 0] = out_data[4 * i + 1] = out_data[4 * i + 2] = in[i];
out_data[4 * i + 3] = (info->key_defined &&
(in[i] == info->key_r)) ? 0 : 255;
}
else if (bitDepth == 8 && colorType == 2) // RGB color
for (i = 0; i < numpixels; i++) {
for (c = 0; c < 3; c++)
out_data[4 * i + c] = in[3 * i + c];
out_data[4 * i + 3] = (info->key_defined && (in[3 * i + 0] == info->key_r)
&& (in[3 * i + 1] == info->key_g) &&
(in[3 * i + 2] == info->key_b)) ? 0 : 255;
}
else if (bitDepth == 8 && colorType == 3) // indexed color (palette)
for (i = 0; i < numpixels; i++) {
if (4U * in[i] >= info->palette->size)
return 46;
for (c = 0; c < 4; c++) // get rgb colors from the palette
out_data[4 * i + c] = info->palette->data[4 * in[i] + c];
}
else if (bitDepth == 8 && colorType == 4) // greyscale with alpha
for (i = 0; i < numpixels; i++) {
out_data[4 * i + 0] = out_data[4 * i + 1] = out_data[4 * i + 2] =
in[2 * i + 0];
out_data[4 * i + 3] = in[2 * i + 1];
}
else if (bitDepth == 8 && colorType == 6)
for (i = 0; i < numpixels; i++)
for (c = 0; c < 4; c++)
out_data[4 * i + c] = in[4 * i + c]; // RGB with alpha
else if (bitDepth == 16 && colorType == 0) // greyscale
for (i = 0; i < numpixels; i++) {
out_data[4 * i + 0] = out_data[4 * i + 1] = out_data[4 * i + 2] =
in[2 * i];
out_data[4 * i + 3] = (info->key_defined &&
(256U * in[i] + in[i + 1] == info->key_r))
? 0 : 255;
}
else if (bitDepth == 16 && colorType == 2) // RGB color
for (i = 0; i < numpixels; i++) {
for (c = 0; c < 3; c++)
out_data[4 * i + c] = in[6 * i + 2 * c];
out_data[4 * i + 3] = (info->key_defined &&
(256U * in[6 * i + 0] + in[6 * i + 1] ==
info->key_r) &&
(256U * in[6 * i + 2] + in[6 * i + 3] ==
info->key_g) &&
(256U * in[6 * i + 4] + in[6 * i + 5] ==
info->key_b)) ? 0 : 255;
}
else if (bitDepth == 16 && colorType == 4) // greyscale with alpha
for (i = 0; i < numpixels; i++) {
out_data[4 * i + 0] = out_data[4 * i + 1] = out_data[4 * i + 2] = in[4 * i]; // msb
out_data[4 * i + 3] = in[4 * i + 2];
}
else if (bitDepth == 16 && colorType == 6)
for (i = 0; i < numpixels; i++)
for (c = 0; c < 4; c++)
out_data[4 * i + c] = in[8 * i + 2 * c]; // RGB with alpha
else if (bitDepth < 8 && colorType == 0) // greyscale
for (i = 0; i < numpixels; i++) {
UINT32 value = (PNG_readBitsFromReversedStream (&bp, in, bitDepth) * 255) / ((1 << bitDepth) - 1); // scale value from 0 to 255
out_data[4 * i + 0] = out_data[4 * i + 1] = out_data[4 * i + 2] =
(UINT8) value;
out_data[4 * i + 3] = (info->key_defined && value &&
(((1U << bitDepth) - 1U) == info->key_r) &&
((1U << bitDepth) - 1U)) ? 0 : 255;
}
else if (bitDepth < 8 && colorType == 3) // palette
for (i = 0; i < numpixels; i++) {
UINT32 value = PNG_readBitsFromReversedStream (&bp, in, bitDepth);
if (4 * value >= info->palette->size)
return 47;
for (c = 0; c < 4; c++) // get rgb colors from the palette
out_data[4 * i + c] = info->palette->data[4 * value + c];
}
return 0;
}
PNG_info_t *
PNG_info_new (
)
{
PNG_info_t *info;
info = png_alloc_malloc (sizeof (PNG_info_t));
#if 0
for (i = 0; i < sizeof (PNG_info_t); i++)
((UINT8 *) info)[i] = 0;
#endif
info->palette = vector8_new (0, 0);
info->image = vector8_new (0, 0);
return info;
}
PNG_info_t *
PNG_decode (
const UINT8 *in,
UINT32 size
)
{
PNG_info_t *info;
UINT32 pos; // first byte of the first chunk after the header
vector8_t *idat; // the data from idat chunks
BOOLEAN IEND, known_type;
UINT32 bpp;
vector8_t *scanlines; // now the out buffer will be filled
UINT32 bytewidth, outlength;
UINT8 *out_data;
PNG_error = 0;
if (size == 0 || in == 0) {
PNG_error = 48; // the given data is empty
return NULL;
}
info = PNG_info_new ();
PNG_readPngHeader (info, in, size);
if (PNG_error)
return NULL;
pos = 33; // first byte of the first chunk after the header
idat = NULL; // the data from idat chunks
IEND = FALSE;
known_type = TRUE;
info->key_defined = FALSE;
// loop through the chunks, ignoring unknown chunks and stopping at IEND chunk. IDAT data is
// put at the start of the in buffer
while (!IEND) {
UINT32 i, j;
UINT32 chunkLength;
UINT32 chunkType;
if (pos + 8 >= size) {
PNG_error = 30; // error: size of the in buffer too small to contain next chunk
return NULL;
}
chunkLength = PNG_read32bitInt (&in[pos]);
pos += 4;
if (chunkLength > 0x7fffffff) {
PNG_error = 63;
return NULL;
}
if (pos + chunkLength >= size) {
PNG_error = 35; // error: size of the in buffer too small to contain next chunk
return NULL;
}
chunkType = *(UINT32 *) &in[pos];
if (chunkType == CHUNK_IDAT) { // IDAT: compressed image data chunk
UINT32 offset = 0;
if (idat) {
offset = idat->size;
vector8_resize (idat, offset + chunkLength);
}
else
idat = vector8_new (chunkLength, 0);
for (i = 0; i < chunkLength; i++)
idat->data[offset + i] = in[pos + 4 + i];
pos += (4 + chunkLength);
}
else if (chunkType == CHUNK_IEND) { // IEND
pos += 4;
IEND = TRUE;
}
else if (chunkType == CHUNK_PLTE) { // PLTE: palette chunk
pos += 4; // go after the 4 letters
vector8_resize (info->palette, 4 * (chunkLength / 3));
if (info->palette->size > (4 * 256)) {
PNG_error = 38; // error: palette too big
return NULL;
}
for (i = 0; i < info->palette->size; i += 4) {
for (j = 0; j < 3; j++)
info->palette->data[i + j] = in[pos++]; // RGB
info->palette->data[i + 3] = 255; // alpha
}
}
else if (chunkType == CHUNK_tRNS) { // tRNS: palette transparency chunk
pos += 4; // go after the 4 letters
if (info->colorType == 3) {
if (4 * chunkLength > info->palette->size) {
PNG_error = 39; // error: more alpha values given than there are palette entries
return NULL;
}
for (i = 0; i < chunkLength; i++)
info->palette->data[4 * i + 3] = in[pos++];
}
else if (info->colorType == 0) {
if (chunkLength != 2) {
PNG_error = 40; // error: this chunk must be 2 bytes for greyscale image
return NULL;
}
info->key_defined = TRUE;
info->key_r = info->key_g = info->key_b = 256 * in[pos] + in[pos + 1];
pos += 2;
}
else if (info->colorType == 2) {
if (chunkLength != 6) {
PNG_error = 41; // error: this chunk must be 6 bytes for RGB image
return NULL;
}
info->key_defined = TRUE;
info->key_r = 256 * in[pos] + in[pos + 1];
pos += 2;
info->key_g = 256 * in[pos] + in[pos + 1];
pos += 2;
info->key_b = 256 * in[pos] + in[pos + 1];
pos += 2;
}
else {
PNG_error = 42; // error: tRNS chunk not allowed for other color models
return NULL;
}
}
else { // it's not an implemented chunk type, so ignore it: skip over the data
if (!(in[pos + 0] & 32)) {
// error: unknown critical chunk (5th bit of first byte of chunk type is 0)
PNG_error = 69;
return NULL;
}
pos += (chunkLength + 4); // skip 4 letters and uninterpreted data of unimplemented chunk
known_type = FALSE;
}
pos += 4; // step over CRC (which is ignored)
}
bpp = PNG_getBpp (info);
scanlines =
vector8_new (((info->width * (info->height * bpp + 7)) / 8) + info->height,
0);
PNG_error = Zlib_decompress (scanlines, idat);
if (PNG_error)
return NULL; // stop if the zlib decompressor returned an error
bytewidth = (bpp + 7) / 8;
outlength = (info->height * info->width * bpp + 7) / 8;
vector8_resize (info->image, outlength); // time to fill the out buffer
out_data = outlength ? info->image->data : 0;
if (info->interlaceMethod == 0) { // no interlace, just filter
UINT32 y, obp, bp;
UINT32 linestart, linelength;
linestart = 0;
// length in bytes of a scanline, excluding the filtertype byte
linelength = (info->width * bpp + 7) / 8;
if (bpp >= 8) // byte per byte
for (y = 0; y < info->height; y++) {
UINT32 filterType = scanlines->data[linestart];
const UINT8 *prevline;
prevline = (y == 0) ? 0 : &out_data[(y - 1) * info->width * bytewidth];
PNG_unFilterScanline (&out_data[linestart - y],
&scanlines->data[linestart + 1], prevline,
bytewidth, filterType, linelength);
if (PNG_error)
return NULL;
linestart += (1 + linelength); // go to start of next scanline
}
else { // less than 8 bits per pixel, so fill it up bit per bit
vector8_t *templine; // only used if bpp < 8
templine = vector8_new ((info->width * bpp + 7) >> 3, 0);
for (y = 0, obp = 0; y < info->height; y++) {
UINT32 filterType = scanlines->data[linestart];
const UINT8 *prevline;
prevline = (y == 0) ? 0 : &out_data[(y - 1) * info->width * bytewidth];
PNG_unFilterScanline (templine->data, &scanlines->data[linestart + 1],
prevline, bytewidth, filterType, linelength);
if (PNG_error)
return NULL;
for (bp = 0; bp < info->width * bpp;)
PNG_setBitOfReversedStream (&obp, out_data,
PNG_readBitFromReversedStream (&bp,
templine->
data));
linestart += (1 + linelength); // go to start of next scanline
}
}
}
else { // interlaceMethod is 1 (Adam7)
int i;
vector8_t *scanlineo, *scanlinen; // "old" and "new" scanline
UINT32 passw[7] = {
(info->width + 7) / 8, (info->width + 3) / 8, (info->width + 3) / 4,
(info->width + 1) / 4, (info->width + 1) / 2, (info->width + 0) / 2,
(info->width + 0) / 1
};
UINT32 passh[7] = {
(info->height + 7) / 8, (info->height + 7) / 8, (info->height + 3) / 8,
(info->height + 3) / 4, (info->height + 1) / 4, (info->height + 1) / 2,
(info->height + 0) / 2
};
UINT32 passstart[7] = { 0, 0, 0, 0, 0, 0, 0 };
UINT32 pattern[28] =
{ 0, 4, 0, 2, 0, 1, 0, 0, 0, 4, 0, 2, 0, 1, 8, 8, 4, 4, 2, 2, 1, 8, 8,
8, 4, 4, 2, 2
}; // values for the adam7 passes
for (i = 0; i < 6; i++)
passstart[i + 1] =
passstart[i] + passh[i] * ((passw[i] ? 1 : 0) +
(passw[i] * bpp + 7) / 8);
scanlineo = vector8_new ((info->width * bpp + 7) / 8, 0);
scanlinen = vector8_new ((info->width * bpp + 7) / 8, 0);
for (i = 0; i < 7; i++)
PNG_adam7Pass (out_data, scanlinen->data, scanlineo->data,
&scanlines->data[passstart[i]], info->width, pattern[i],
pattern[i + 7], pattern[i + 14], pattern[i + 21], passw[i],
passh[i], bpp);
}
if (info->colorType != 6 || info->bitDepth != 8) { // conversion needed
vector8_t *copy = vector8_copy (info->image); // xxx: is this copy necessary?
PNG_error = PNG_convert (info, info->image, copy->data);
}
return info;
}
/*************************************************************************************************/
#ifdef TEST
#include
#include
int
main (
int argc,
char **argv
)
{
char *fname = (argc > 1) ? argv[1] : "test.png";
PNG_info_t *info;
struct stat statbuf;
UINT32 insize, outsize;
FILE *infp, *outfp;
UINT8 *inbuf;
UINT32 n;
if (stat (fname, &statbuf) != 0) {
perror ("stat");
return 1;
}
else if (!statbuf.st_size) {
printf ("file empty\n");
return 1;
}
insize = (UINT32) statbuf.st_size;
inbuf = png_alloc_malloc (insize);
infp = fopen (fname, "rb");
if (!infp) {
perror ("fopen");
png_alloc_free (inbuf);
return 1;
}
else if (fread (inbuf, 1, insize, infp) != insize) {
perror ("fread");
fclose (infp);
png_alloc_free (inbuf);
return 1;
}
fclose (infp);
printf ("input file: %s (size: %d)\n", fname, insize);
info = PNG_decode (inbuf, insize);
png_alloc_free (inbuf);
printf ("PNG_error: %d\n", PNG_error);
if (PNG_error != 0)
return 1;
printf ("width: %d, height: %d\nfirst 16 bytes: ", info->width, info->height);
for (n = 0; n < 16; n++)
printf ("%02x ", info->image->data[n]);
printf ("\n");
outsize = info->width * info->height * 4;
printf ("image size: %d\n", outsize);
if (outsize != info->image->size) {
printf ("error: image size doesn't match dimensions\n");
return 1;
}
outfp = fopen ("out.bin", "wb");
if (!outfp) {
perror ("fopen");
return 1;
}
else if (fwrite (info->image->data, 1, outsize, outfp) != outsize) {
perror ("fwrite");
return 1;
}
fclose (outfp);
#ifdef ALLOC_DEBUG
png_alloc_node_t *node;
for (node = png_alloc_head, n = 1; node; node = node->next, n++)
printf ("node %d (%p) addr = %p, size = %ld\n", n, node, node->addr,
node->size);
#endif
png_alloc_free_all (); // also frees info and image data from PNG_decode
return 0;
}
#endif
----
===== References =====
http://lodev.org/lodepng/
http://ysflight.in.coocan.jp/programming/pngdecoder/pngdecodere.html
https://searchcode.com/codesearch/view/71804966/